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DISSIPATION OF ALFVEN WAVES IN SOLAR CORONAL ARCHES

R N Sudan & P L Similon

Laboratory of Plasma Studies, Cornell University, NY, USA

I. INTRODUCTION

It has long been surmised that the temperature of the solar

corona and the consequent radiated power in thermal bremsstrah-

lung is maintained by the input of mechanical energy flux of or-

der 1W/cm 2 from photospheric turbulent motion [1]. What is

still a matter of contention is the physical mechanism by which

this energy is delivered to and absorbed by the corona. It is also

generally accepted that the solar magnetic field acts as conduit

for the transmission of this energy flux to the corona. Of the

three modes by which a magnetic field supports wave motion in

a plasma only the shear Alfvdn wave can penetrate to the high

corona and indeed along open field lines this activity is observed

even in the solar wind. In the closed field line regions, however,

the resolution of present observations is insufficient to detect any

wave activity. The upper limit of the rms coronal turbulent fluid

velocity is _ 25krn/sec [1,2]. The main difficulty is to explain the

required dissipation of Alfvdn wave flux in the corona given the

extremely low value of the plasma resistivity which, on the ba-

sis of conventional theory [3], would predict an absorption length

orders of magnitude larger than the length of the coronal loop.

This means that a wave-packet would bounce back and forth in

the magnetic loop almost forever before it is absorbed. However,

Hollweg [3] has computed that the wave-packet is not completely

reflected at the base of the loop in the denser chromosphere; but

that a fraction of the energy leaks away by virtue of mode trans-

formation, etc. If the loop is treated as a wave cavity, because of

this leakage its quality factor QL _ 50 [3]. Thus, only if it can be

demonstrated that in some manner, due to inhomogeneities, wave

dissipation reduces Q to less than QL can it be concluded that

the waves deposit their energy in the corona and contribute to its

heat content.

Because of this inherent limitation in Alfvdn wave dissipa-

tion, Parker has renounced [1] the hypothesis of coronal heating by

Alfvdn waves altogether and put forward an alternative scenario.

Since the coronal pressure is much smaller than the magnetic pres-

sure i.e., fl -- 8xp/B 2 _ 10 -2 << 1, the equation governing the

magnetic field is the so-called force-free equation;

(VxB) xB=O. (1)

Equation (I) has to be solved in the context of Fig. I,where the

feet of the fieldlines,presumably anchored in the dense photo-

spheric plasma, suffera quasi-random two-dimensional motion.

_[_ corona

Chromosphe_

Fig. 1 Schematic of solar coronal magnetic loop.

This motion leads not only to the twisting of the field lines but to

tangential discontinuities in the volume i.e., surfaces across which

the direction of the field changes discontinuously and which axe

therefore the seat of singular current layers. In actuality, the width

of these singular layers is determined by the resistivity, but the

field gradients and local current densities are high, guaranteeing

high local dissipation and ultimately to reconnected magnetic field

lines. Parker claims that a balance is struck between winding the

field by photospheric motion and the release of this energy by

dissipation at the singular surfaces yielding an energy input of

1W/cm 2 to the corona.

Although such a process looks eminently plausible doubts

have been expressed by van Ballegooijen [41 and Vekstein [5] on

the basis of restricted models. In any case, analytical or numeri-

cal demonstration of the evolution of such singular layers together

with a quantitative determination of dissipation rates is neces-

sary to validate this suggestion. There is, however, a very im-

portant corollary to the evolution of singular layers viz., that the

magnetic field can no more be considered to be regular over the

entire volume. In the vicinity of the singular layers, neighbor-

ing field lines will diverge exponentially over a scale length A and

diffuse over distances greater than A with a diffusion coefficient

DM = _(Az.L)2/As) where As is the correlation distance along

the field line and AZ.L is the random step in the perpendicular
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direction. Thus the photospheric motion will give rise to irregu-

larities in the magnetic structure of the coronal loop.

Studies of wave dissipation in inhomogeneous but regular

magnetic fields by Tataronis and Grossman [6], Kappraff and Tata-

ronis [71, Heyvaerts and Priest [8], Xonson [9], Davila [10], Hollweg

[11] and Groseman and Smith [12], reveal that the dissipation

length is proportional to R_M whereas in homogeneous fields it

is proportional to RM; RM, the magnetic Reynolds number, is

10 l° . If, however, the irregularities of the magnetic field dis-

cussed above are taken into account, it has been shown by Sim-

ilon and Sudan [13] that the dissipationlength is proportional to

In RM. The Q of the loop computed for such an irregular field can

be much less than the Hollweg limit QL so that Alfv_n dissipation

could indeed lead to coronal heating!

Our model for coronal heating by Alfv_n waves therefore de-

pends on those photospheric motions with excitation frequencies

below wA ---- (vA)R -1 to cause a slow twisting of the flux tubes

which builds up magnetic stress and singular layers and ultimately

to reconnection and irregular field lines. The photospheric motions

with excitation frequencies in excess ofoJ A are able to excite Alfv_n

waves which dissipate rapidly in the presence of the stochastic field

structure. Of course, this does not preclude direct dissipation of

the stressed magnetic energy by joule dissipation in the singular

layers. However, the rate of such dissipation, according to the

Sweet-Parker model, will be proportional to R_M and may turn

out not to be sufficient.

In the next section we develop a set of rescaled MHD equa-

tions similar, but not identical to, the Strauss equations [14,151

for analyzing both the slow evolution of the magnetic field and

the fast time scale of the Alfv_n waves. The dissipation of Alfv_n

waves is treated in Section IV.

II. RESCALED MHD EQUATIONS FOR THE

CORONA

The equilibrium force balance is given by

4xVP0 = (V x Bo) x B0, (2)

with P0 = po(x) - g f" dzpo(z), Po is the gas pressure, po(z) is

the stratified density and g is the acceleration due to gravity. Let

= 8xPo/B_ be a small quantity of order e << 1. Then, to

lowest order in _, Eqn.(2) reverts to the force-free equation (1).

From (1), setting B0 = Bob we obtain

VxBo=aoBo; Bo.Vao=0, (3)

V × b = aob+ (b × V±Bo)/Bo , (4a)

b-V×b=c_o, (4b)

_ × v × _ = -_.v____ _ R:_ = -(V±B0)/Bo, (4c)

V.b = -(b. VBo)/Bo . (4d)

Rc is the radius of curvature of the field line. Figure (1) shows a

coronal loop of length L and minor radius a. We now order the

scale of perturbations of this flux tube such that

a/a=.~ o(i), (sa)

a/at~ ,½, (5b)

and

a a a (,}, (5c)
as L aZ.L

where s is the coordinate along the lines of force of B0 and X.L are

the perpendicular coordinates. Thus, all is taken to be of order

e½. Furthermore, a/Re is also of order ({. The perturbations of

the equilibrium quantities are scaled as follows:

p = po(Z) + 6p(s,x±,t) , (ea)

p = ,[po(x) + 8p(,,_,., t)], (_)

v = _{6,_.(s,x.,t) + _8,,H(s,x±,t) + .... (6c)

A = Ao + _½6Ail(S,x±,t) + _6A±(s,x±,t) + .... (6d)

v is the fluid veloccity, A is the vector potential such that V.A = 0

and B = V x A. Then Ohm's law for the plasma may be expressed

as

_AE=-Vlo-at =-vxB+j/_, (7)

where j = -(4_r)-lv2A is the current density and o is the plasma

conductivity. Then, from Eqns. (6) and (7), to order e½, we obtain

_,,±= (/,× v±_o)/no, (g)

and to order e taking the _ component of (7),

]- _ + (_v±. v±) 8All= -_-_ +,V_SA,, (0)

with r/ = (4_ra) -z. Taking the b component of the curl of Eqn.

(7) we get, to order e] ,

dsBii = (6B±. V±)Sv u + r/V28BII, (10)

with

6B± = V±6AII x b.

To order e½ the continuity equation becomes

(11)

a

_--_6p = -6v±- Vp0 , (12)

and to order _ the perpendicular momentum balance is given by:

d

Po_ 6v'L=-V±6p+6j±xB°+(j° + 6JU) (13)

X 6B± + 8pg + pov±V_6v.j_ ,

and to order (_ the parallel momentum balance is given by

d
po_-_6Vll = -Vu6p -I- _. 6j± x 6B± -I- 6p&. g + PoVllV_L6Vll • (14)

Here j0 = a0B0b, v± and vii are the perpendicular and parallel

kinematic viscosities, V-6V.L is of order e, and Bp_ "g/Pog is taken

to be of order e_. The pressure is obtained from a static equation

obtained by taking the divergence of Eqn. (13) and recognizing

that V • _v± may be neglected because it is of higher order by

e} than the remaining terms. Operating on Eqn. (13) with the



ALFVEN WAVES IN SOLAR CORONAL ARCHES 65

operator V • _x we obtain to order e,

d 0

V, - _A _ _ V, _ = - a--_ V_L 6All

- BoZ(SB±. V±) V_. 8All

+ Bo'(6B,. V.) a0 (15)

+ V, • _---_Pbxg

+ _,VA 2 V_L Io,

where we have eliminated 6j, through the relations Vii • 6jl I =

-v,. aj± and _j, = --(4_)-'V_L_A,. F_uations(9), (10), (12),
(14) and (15) advance, 6All , 6BEi , 6p, 6vii and

V,_, respectively; 6v± and 6B, are obtained from (8) and (11).

This set of equations constitute a rescaled set of MHD equations

suitable for the study of coronal magnetic fields. Equations (9),

(12), and (15) form a serf-consistent set to lowest order.

HI. "vERY SLOW MOTIONS OF CORONAL LOOP

MAGNETIC FIELDS

When the excitation frequency of the perturbations to the

coronal loop is below WA (as discussed in Sec. I) Alfvdn waves will

not be excited and the time evolution of the system is adiabatic.

In this limit the a/Ot operator is even smaller than order e_. We

are therefore justified in neglecting the inertial term on the LHS

of Eqn.(15). The term involving g may also be dropped if the

magnetic field is approximately collinear with g. Then the lowest

order equations (15) and (9) furnish

)V2L_AII-I- \ Bo " V, V_flAii : _'.L V49 _ (16)

as _\ Bo " v, _ = 8Au+rlv[aAII, (17)

where VA : Bo/(4_po) ½ is the Alfvdn velocity. Equations (16)

and (17) form a closed set and describe the very slow motions

of the loop. Nevertheless, we require the time scale r < A__/r7

where A, is the perpendicular scale i.e., the magnetic Reynolds

number RM > 1. We notice that in the limit v, --, 0, Eqn.

(16) is homologous to the two-dimensionai incompressible Euler

equation for the vorticity if the coordinate a is identified with

time and the Eulerian fluid velocity with V±fAII x b. Proceeding

with this analogy we may identify the Lagrangian motion of the

Eulerian fluid elements along the streamlines (magnetic lines of

force). Thus,

d (V,aA, x _)/s0 (zs)

which leads to a Hamiltonian system of equations for the compo-

nents X. = (X1, Xa)

dx.__£z = O6AL. dx_ 06All
-- (19)

ds BoSX2 ' ds Boaxz '

with 6All/B o as the Hamiltonian. It is well known that even if

the velocity field in unsteady two-dimensional Navier-Stokes flow

is continuous and laminar, the trajectories of the fluid elements

may be stochastic, a process known as _chaotic adveetion _ [16] or

"Lagrangian turbulence _ [17].

In our case $All is a function of s in addition to Xz and X2

and it is therefore highly likely that the chaotic motions of the feet

of field lines which is equivalent to prescribing the injected current

V__ 6All at s = O will most likely lead to chaotic magnetic field

lines.

Equation (16) may be integrated numerically along s if the

injected current 6 ill is specified at s = 0. The RHS of Eqn. (17)

is therefore known and Eqn. (17) can be integrated now to furnish

which specifies the velocity field.

For B0 = B0$ with B0 constant and an injected current

at s = 0 given by

6Jll/JO = sin(2xx/L)sin(21ry/L)
(19a)

+ • cos(2xnx/L) cos(2_my/L),

we have plotted, in Fig. 2, what we define as the "irregularity _

index

= _z-iln{(lax,(z) I') / (I 8=.(0)I') }, (19b)A

which isa measure ofhow neighboring fieldlines8x, apart diverge

from each other according to d6x,/dz = Bol(6B,- V)Sx,. In

the limit z -* co, A is the Liapunov exponent. But in the case

of finite length loops, Zmax = L.
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Fig. 2 Plot of A defined in Eqn. (19b) as a function of z for 6jl t
given by Eqn. (19a) for _ = 0 and _ = 0.3.

IV. ALFV_N WAVES IN ARBITRARY MAGNETIC

FIELDS

Formulation of the Eikonal Approximation

In this case the fast component of photospheric motions excite

Alfv6n waves so that cg/at _ 0(e_). To lowest order we need only

Eqns. (9), (12), and (15) for 6All , 5p, and V,@. As mentioned in

Sect. I, the maximum bound of the perturbations in velocity in

the coronal loop is of order 25 km/sec as compared to the typical

Alfv6n velocity of 2000 km/sec. Thus we are justified in linearizing

these equations to obtain

_0 a_,= _V_A, (20)strAit + _

0

_-]6p = -6v± • V,p0, (21)

V, • VA _ _'iV±_ = - V___AII + 5B± • V,ao

(22)

+_0 × g " V,$p + V, VA_V._L_.



66 R N SUDAN & P L SIMILON

To simplify our discussion we take a0 to be uniform and b×g _ 0.

Ifthe time dependence is taken as exp -ioJt these equations may

be combined to give:

(23)
.v± _V_. = 0-,-- v a _o ,

O)

To solve this equation we employ the ballooning approximation

developed in fusion physics [18,19]. In what follows we outline the

analysis of Eqn. (23) by Similon and Sudan [13]. The perturbed

fields are represented as

_p(x, t) = _b(s,x±) exp[iS(x) - ioat], (24)

where the amplitude _ is a slow function of s and x± while the

phase function S represents the fast variation. In this represen-

tation b • VS = kll andk± = VxS and Eqn. (23) may be

written as

_k±d : -(v_)-k±- (k±-_)b, (26)

with_ = b. Vb. InEqns. (25) and (26) we have set k[l--+0as

is required for long parallel wavelengths. If,on the other hand,

one were to treat parallelwavelengths much shorter than the scale

of variation of the equilibrium quantities with s, then d/as is

replaced by ikl[in Eqn. (25) and s'k± may revert back to V± ifwe

wish to take account of perpendicular gradients in the equilibrium

quantities. In this limitEqn. (26) is modified to

sk± = - (Vb).k± - (k±.s)/_- (VvA/vA)kll . (26')

The driving frequency 0Jis constant and the boundary conditions

are the given amplitude at s = 0 and outgoing wave condition for

s>L.

Dissipation of Alfv_n Waves in Complex Magnetic
Field

From Eqn. (25) it is straightforward to establish the wave

energy equation
0F

o-q-= I_'11I_/o, (27)

where we have dropped viscous dissipation; the wave energy flux

F = VA(S)e(s) and the wave energy density

_(s): _p0_v:+ (S,)-16B'L

= (8_r)-' [k_._ I_ol 2/v_ + k_ 16AI_ ]2] (28)

(4_)-_k_ l a&l I_ ,

because _o _ vASAII. From Eqn. (27) we obtain the relation

between the wave flux at s and the wave flux at s = 0,

F(s) = F(0)exp- ds'(vk_/2uA) . (29)

We now define the dissipation length sd through

'" (k_/)ds' _ VA = 1 , (30)

i.e., the distance at which the wave flux decreases by e -2.

We first address a simple example in which the magnetic field

Bo(z)_. varies with z. Thus VA varies with = and from Eqn. (26')

' = dvA/dx.we obtain k± = skllv'a/v a = 8ojv'a/v_a with v=

Substituting this expression for k± in Eqn. (30) we get

• , = (3_,/._'_)_ = R_. (31)

Similarly, the dissipation layer width w is given in order of mag-

nitude by k__ 1 at s _ 8_, i.e.

w = (rlVA/3_v'a)_; o¢ RM t , (32)

and decreases as 17_. These results are identical with those of

Tataronis and Grossmann [6], Kappraff and Tataronis [7], and

Heyvaerts and Priest [81 arrived at by considerations of Alfv_n res-

onances and matched asymptotic expansions about the resonance

oJ= klivA(x). The wave-packet picture described here [13] gives

preciselythe same resultsbut iscapable of greater generalization

as we show next.

Ifthe magnetic fieldisirregular as discussed in Sect. II then

neighboring fieldlines diverge exponentially, i.e.,_(so + 53) =

_(s0) exp ASs where _ is the distance between two neighboring

lines. This exponentiation is limited to some correlation length

afterwhich itbreaks down. On a scalegreater than the correlation

lengths the fieldlines have a diffusivebehavior and _ varies as

(2D,r,s)½ where DM = ((Az±)_/As) is the fieldline diffusion

coefficient.The fieldlineexponentiation stretches the wave packet

unidirectionally and steepens the gradients. This gives rise to a

wave packet that spreads over an area (2DMs) constituted of thin

filaments of width ks _exp -As (see Fig. 3). Thus,

(s)

(c)

we" 7t.= ,

2DMS (d) 2DMS

Fig. 3 Wave Packet evolution in s along the stochastic magnetic

field.(a) is the initialstate; (b) and (c) show the exponentiation

phase, during which the gradients increase as exp(As); (c) and (d)

show the fieldline diffusion,during which the packet spreads on a

length (2DMs)½; (d) is the state beyond sd, when "microscopic"

diffusivity is effective, and when energy is dissipated by resistivity
(from Ref.[13]).

k__(s) _ k0_exp 2As. When thisexpression issubstituted in Eqn.

(30) we obtain

s_ = 1A-'2 ln(2AVA/_lk]) o¢ In RM , (33)
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'kO 1 is the perpendicular scale length of the perturbation at the

photosphere 8 = O. The width of the dissipation layer to is

to_kit(s_) = (_/2_VA)_ _ R_ _ . (34)

Significant energy dissipation does not take place until s ap-

proaches sa when the wave amplitudes crash to a low level. For

s _ sd the resistivity smooths out the large gradients, dissipates

a large fraction of Alfv_n wave energy and redistributes the rest

over a large area 2DMSd determined by magnetic diffusion (see

Fig. 3). For s > sd, the wave packet in which high k± compo-

nents have diffused away now evolves as a result of magnetic field

line diffusion. The wave energy flux will vary, from this point on,

as FCs) = F(0)[1 + 2D,.8] -1.

For _ _ 2vA/R, RM _ 1010, aVeA/VA : 4, R _ 104kin

one finds, for the laminar magnetic field, Wd/a _ 1.6 × 10 -4 and

sd/R _ 780. On the other hand, for an irregular magnetic field

with _R _ 1/2, k0a _ 3x we get sd/R = 37 and for _R _ 2,

s_/R _ 10. The corresponding quality factors Q = Sd/All = 18

and 5, respectively, with All _ _R are easily less than Hollweg's

limiting Qr.. Thus, an irregular magnetic field is very effective to

dissipate Alfv_n waves because it generates the small scale lengths

needed for dissipation.

Dispersive Effects

So far we have assumed that the wave packets propagate

closely along the field lines i.e., there is no dispersion in the per-

pendicular direction. This requires a_w/Sk_ << _. A number of

effects e.g. finite Larmor effects, finite pressure, gravity, and equi-

librium currents could, in principle, contribute to the dispersion.

These have been shown [13] to be insignificant in the solar coronal

context. Because the Larmor radius of the ion is only <102cm

the FLR effect is negligible with ko I _ 10_km. The additional

corrections to Eqn. (23), due to finite pressure and gravity, are

homogeneous in k±. Furthermore, field line divergence aligns k±

to the direction of greatest contraction. Thus the spectrum con-

tracts locally to one-dimension and hence a2_o/cgk±ak± tends to

vanish leaving the wave packet nondispersive. Finally, in Eqn.

(23) we observe that the equilibrium current does not affect the

wave evolution if _0 is uniform. For arbitrary _o the dispersion

introduced by V±c_0 decreases rapidly at large wavenumbers so

that as the wave packet develops finer structure it conforms more

closely to the field lines.
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CONCLUSION

We have shown that the slow motion of the feet of coronal

arches leads to irregular magnetic fields and that Alfvdn waves

propagating in the irregular magnetic structure are dissipated

through filamentation of the wave packet that generates short

scales necessary for efficient dissipation.
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